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Abstract

Recent work has shown that convolutional networks can

be substantially deeper, more accurate, and efficient to train

if they contain shorter connections between layers close to

the input and those close to the output. In this paper, we

embrace this observation and introduce the Dense Convo-

lutional Network (DenseNet), which connects each layer

to every other layer in a feed-forward fashion. Whereas

traditional convolutional networks with L layers have L

connections—one between each layer and its subsequent

layer—our network has
L(L+1)

2 direct connections. For

each layer, the feature-maps of all preceding layers are

used as inputs, and its own feature-maps are used as inputs

into all subsequent layers. DenseNets have several com-

pelling advantages: they alleviate the vanishing-gradient

problem, strengthen feature propagation, encourage fea-

ture reuse, and substantially reduce the number of parame-

ters. We evaluate our proposed architecture on four highly

competitive object recognition benchmark tasks (CIFAR-10,

CIFAR-100, SVHN, and ImageNet). DenseNets obtain sig-

nificant improvements over the state-of-the-art on most of

them, whilst requiring less computation to achieve high per-

formance. Code and pre-trained models are available at

https://github.com/liuzhuang13/DenseNet.

1. Introduction

Convolutional neural networks (CNNs) have become

the dominant machine learning approach for visual object

recognition. Although they were originally introduced over

20 years ago [18], improvements in computer hardware and

network structure have enabled the training of truly deep

CNNs only recently. The original LeNet5 [19] consisted of

5 layers, VGG featured 19 [28], and only last year Highway
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Figure 1: A 5-layer dense block with a growth rate of k = 4.

Each layer takes all preceding feature-maps as input.

Networks [33] and Residual Networks (ResNets) [11] have

surpassed the 100-layer barrier.

As CNNs become increasingly deep, a new research

problem emerges: as information about the input or gra-

dient passes through many layers, it can vanish and “wash

out” by the time it reaches the end (or beginning) of the

network. Many recent publications address this or related

problems. ResNets [11] and Highway Networks [33] by-

pass signal from one layer to the next via identity connec-

tions. Stochastic depth [13] shortens ResNets by randomly

dropping layers during training to allow better information

and gradient flow. FractalNets [17] repeatedly combine sev-

eral parallel layer sequences with different number of con-

volutional blocks to obtain a large nominal depth, while

maintaining many short paths in the network. Although

these different approaches vary in network topology and

training procedure, they all share a key characteristic: they

create short paths from early layers to later layers.
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In this paper, we propose an architecture that distills this

insight into a simple connectivity pattern: to ensure maxi-

mum information flow between layers in the network, we

connect all layers (with matching feature-map sizes) di-

rectly with each other. To preserve the feed-forward nature,

each layer obtains additional inputs from all preceding lay-

ers and passes on its own feature-maps to all subsequent

layers. Figure 1 illustrates this layout schematically. Cru-

cially, in contrast to ResNets, we never combine features

through summation before they are passed into a layer; in-

stead, we combine features by concatenating them. Hence,

the ℓth layer has ℓ inputs, consisting of the feature-maps

of all preceding convolutional blocks. Its own feature-maps

are passed on to all L−ℓ subsequent layers. This introduces
L(L+1)

2 connections in an L-layer network, instead of just

L, as in traditional architectures. Because of its dense con-

nectivity pattern, we refer to our approach as Dense Convo-

lutional Network (DenseNet).

A possibly counter-intuitive effect of this dense connec-

tivity pattern is that it requires fewer parameters than tra-

ditional convolutional networks, as there is no need to re-

learn redundant feature-maps. Traditional feed-forward ar-

chitectures can be viewed as algorithms with a state, which

is passed on from layer to layer. Each layer reads the state

from its preceding layer and writes to the subsequent layer.

It changes the state but also passes on information that needs

to be preserved. ResNets [11] make this information preser-

vation explicit through additive identity transformations.

Recent variations of ResNets [13] show that many layers

contribute very little and can in fact be randomly dropped

during training. This makes the state of ResNets similar

to (unrolled) recurrent neural networks [21], but the num-

ber of parameters of ResNets is substantially larger because

each layer has its own weights. Our proposed DenseNet ar-

chitecture explicitly differentiates between information that

is added to the network and information that is preserved.

DenseNet layers are very narrow (e.g., 12 filters per layer),

adding only a small set of feature-maps to the “collective

knowledge” of the network and keep the remaining feature-

maps unchanged—and the final classifier makes a decision

based on all feature-maps in the network.

Besides better parameter efficiency, one big advantage of

DenseNets is their improved flow of information and gra-

dients throughout the network, which makes them easy to

train. Each layer has direct access to the gradients from the

loss function and the original input signal, leading to an im-

plicit deep supervision [20]. This helps training of deeper

network architectures. Further, we also observe that dense

connections have a regularizing effect, which reduces over-

fitting on tasks with smaller training set sizes.

We evaluate DenseNets on four highly competitive

benchmark datasets (CIFAR-10, CIFAR-100, SVHN, and

ImageNet). Our models tend to require much fewer param-

eters than existing algorithms with comparable accuracy.

Further, we significantly outperform the current state-of-

the-art results on most of the benchmark tasks.

2. Related Work

The exploration of network architectures has been a part

of neural network research since their initial discovery. The

recent resurgence in popularity of neural networks has also

revived this research domain. The increasing number of lay-

ers in modern networks amplifies the differences between

architectures and motivates the exploration of different con-

nectivity patterns and the revisiting of old research ideas.

A cascade structure similar to our proposed dense net-

work layout has already been studied in the neural networks

literature in the 1980s [3]. Their pioneering work focuses on

fully connected multi-layer perceptrons trained in a layer-

by-layer fashion. More recently, fully connected cascade

networks to be trained with batch gradient descent were

proposed [39]. Although effective on small datasets, this

approach only scales to networks with a few hundred pa-

rameters. In [9, 23, 30, 40], utilizing multi-level features

in CNNs through skip-connnections has been found to be

effective for various vision tasks. Parallel to our work, [1]

derived a purely theoretical framework for networks with

cross-layer connections similar to ours.

Highway Networks [33] were amongst the first architec-

tures that provided a means to effectively train end-to-end

networks with more than 100 layers. Using bypassing paths

along with gating units, Highway Networks with hundreds

of layers can be optimized without difficulty. The bypass-

ing paths are presumed to be the key factor that eases the

training of these very deep networks. This point is further

supported by ResNets [11], in which pure identity mappings

are used as bypassing paths. ResNets have achieved im-

pressive, record-breaking performance on many challeng-

ing image recognition, localization, and detection tasks,

such as ImageNet and COCO object detection [11]. Re-

cently, stochastic depth was proposed as a way to success-

fully train a 1202-layer ResNet [13]. Stochastic depth im-

proves the training of deep residual networks by dropping

layers randomly during training. This shows that not all

layers may be needed and highlights that there is a great

amount of redundancy in deep (residual) networks. Our pa-

per was partly inspired by that observation. ResNets with

pre-activation also facilitate the training of state-of-the-art

networks with > 1000 layers [12].

An orthogonal approach to making networks deeper

(e.g., with the help of skip connections) is to increase the

network width. The GoogLeNet [35, 36] uses an “Incep-

tion module” which concatenates feature-maps produced

by filters of different sizes. In [37], a variant of ResNets

with wide generalized residual blocks was proposed. In

fact, simply increasing the number of filters in each layer of
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Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change

feature-map sizes via convolution and pooling.

ResNets can improve its performance provided the depth is

sufficient [41]. FractalNets also achieve competitive results

on several datasets using a wide network structure [17].

Instead of drawing representational power from ex-

tremely deep or wide architectures, DenseNets exploit the

potential of the network through feature reuse, yielding con-

densed models that are easy to train and highly parameter-

efficient. Concatenating feature-maps learned by different

layers increases variation in the input of subsequent layers

and improves efficiency. This constitutes a major difference

between DenseNets and ResNets. Compared to Inception

networks [35, 36], which also concatenate features from dif-

ferent layers, DenseNets are simpler and more efficient.

There are other notable network architecture innovations

which have yielded competitive results. The Network in

Network (NIN) [22] structure includes micro multi-layer

perceptrons into the filters of convolutional layers to ex-

tract more complicated features. In Deeply Supervised Net-

work (DSN) [20], internal layers are directly supervised

by auxiliary classifiers, which can strengthen the gradients

received by earlier layers. Ladder Networks [26, 25] in-

troduce lateral connections into autoencoders, producing

impressive accuracies on semi-supervised learning tasks.

In [38], Deeply-Fused Nets (DFNs) were proposed to im-

prove information flow by combining intermediate layers

of different base networks. The augmentation of networks

with pathways that minimize reconstruction losses was also

shown to improve image classification models [42].

3. DenseNets

Consider a single image x0 that is passed through a con-

volutional network. The network comprises L layers, each

of which implements a non-linear transformation Hℓ(·),
where ℓ indexes the layer. Hℓ(·) can be a composite func-

tion of operations such as Batch Normalization (BN) [14],

rectified linear units (ReLU) [6], Pooling [19], or Convolu-

tion (Conv). We denote the output of the ℓth layer as xℓ.

ResNets. Traditional convolutional feed-forward net-

works connect the output of the ℓth layer as input to the

(ℓ + 1)th layer [16], which gives rise to the following

layer transition: xℓ = Hℓ(xℓ−1). ResNets [11] add a

skip-connection that bypasses the non-linear transforma-

tions with an identity function:

xℓ = Hℓ(xℓ−1) + xℓ−1. (1)

An advantage of ResNets is that the gradient can flow di-

rectly through the identity function from later layers to the

earlier layers. However, the identity function and the output

of Hℓ are combined by summation, which may impede the

information flow in the network.

Dense connectivity. To further improve the information

flow between layers we propose a different connectivity

pattern: we introduce direct connections from any layer

to all subsequent layers. Figure 1 illustrates the layout of

the resulting DenseNet schematically. Consequently, the

ℓth layer receives the feature-maps of all preceding layers,

x0, . . . ,xℓ−1, as input:

xℓ = Hℓ([x0,x1, . . . ,xℓ−1]), (2)

where [x0,x1, . . . ,xℓ−1] refers to the concatenation of the

feature-maps produced in layers 0, . . . , ℓ−1. Because of its

dense connectivity we refer to this network architecture as

Dense Convolutional Network (DenseNet). For ease of im-

plementation, we concatenate the multiple inputs of Hℓ(·)
in eq. (2) into a single tensor.

Composite function. Motivated by [12], we define Hℓ(·)
as a composite function of three consecutive operations:

batch normalization (BN) [14], followed by a rectified lin-

ear unit (ReLU) [6] and a 3× 3 convolution (Conv).

Pooling layers. The concatenation operation used in

Eq. (2) is not viable when the size of feature-maps changes.

However, an essential part of convolutional networks is

down-sampling layers that change the size of feature-maps.

To facilitate down-sampling in our architecture we divide

the network into multiple densely connected dense blocks;

see Figure 2. We refer to layers between blocks as transition

layers, which do convolution and pooling. The transition

layers used in our experiments consist of a batch normal-

ization layer and an 1×1 convolutional layer followed by a

2×2 average pooling layer.

Growth rate. If each function Hℓ produces k feature-

maps, it follows that the ℓth layer has k0+k× (ℓ−1) input

feature-maps, where k0 is the number of channels in the in-

put layer. An important difference between DenseNet and

existing network architectures is that DenseNet can have

very narrow layers, e.g., k = 12. We refer to the hyper-

parameter k as the growth rate of the network. We show in

Section 4 that a relatively small growth rate is sufficient to
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Layers Output Size DenseNet-121(k = 32) DenseNet-169(k = 32) DenseNet-201(k = 32) DenseNet-161(k = 48)

Convolution 112 × 112 7 × 7 conv, stride 2

Pooling 56 × 56 3 × 3 max pool, stride 2

Dense Block

(1)
56 × 56

[

1 × 1 conv

3 × 3 conv

]

× 6

[

1 × 1 conv

3 × 3 conv

]

× 6

[

1 × 1 conv

3 × 3 conv

]

× 6

[

1 × 1 conv

3 × 3 conv

]

× 6

Transition Layer

(1)

56 × 56 1 × 1 conv

28 × 28 2 × 2 average pool, stride 2

Dense Block

(2)
28 × 28

[

1 × 1 conv

3 × 3 conv

]

× 12

[

1 × 1 conv

3 × 3 conv

]

× 12

[

1 × 1 conv

3 × 3 conv

]

× 12

[

1 × 1 conv

3 × 3 conv

]

× 12

Transition Layer

(2)

28 × 28 1 × 1 conv

14 × 14 2 × 2 average pool, stride 2

Dense Block

(3)
14 × 14

[

1 × 1 conv

3 × 3 conv

]

× 24

[

1 × 1 conv

3 × 3 conv

]

× 32

[

1 × 1 conv

3 × 3 conv

]

× 48

[

1 × 1 conv

3 × 3 conv

]

× 36

Transition Layer

(3)

14 × 14 1 × 1 conv

7 × 7 2 × 2 average pool, stride 2

Dense Block

(4)
7 × 7

[

1 × 1 conv

3 × 3 conv

]

× 16

[

1 × 1 conv

3 × 3 conv

]

× 32

[

1 × 1 conv

3 × 3 conv

]

× 32

[

1 × 1 conv

3 × 3 conv

]

× 24

Classification

Layer

1 × 1 7 × 7 global average pool

1000D fully-connected, softmax

Table 1: DenseNet architectures for ImageNet. The growth rate for the first 3 networks is k = 32, and k = 48 for DenseNet-161. Note

that each “conv” layer shown in the table corresponds the sequence BN-ReLU-Conv.

obtain state-of-the-art results on the datasets that we tested

on. One explanation for this is that each layer has access

to all the preceding feature-maps in its block and, therefore,

to the network’s “collective knowledge”. One can view the

feature-maps as the global state of the network. Each layer

adds k feature-maps of its own to this state. The growth

rate regulates how much new information each layer con-

tributes to the global state. The global state, once written,

can be accessed from everywhere within the network and,

unlike in traditional network architectures, there is no need

to replicate it from layer to layer.

Bottleneck layers. Although each layer only produces k

output feature-maps, it typically has many more inputs. It

has been noted in [36, 11] that a 1×1 convolution can be in-

troduced as bottleneck layer before each 3×3 convolution

to reduce the number of input feature-maps, and thus to

improve computational efficiency. We find this design es-

pecially effective for DenseNet and we refer to our network

with such a bottleneck layer, i.e., to the BN-ReLU-Conv(1×
1)-BN-ReLU-Conv(3×3) version of Hℓ, as DenseNet-B. In

our experiments, we let each 1×1 convolution produce 4k
feature-maps.

Compression. To further improve model compactness,

we can reduce the number of feature-maps at transition

layers. If a dense block contains m feature-maps, we let

the following transition layer generate ⌊θm⌋ output feature-

maps, where 0 <θ ≤1 is referred to as the compression fac-

tor. When θ=1, the number of feature-maps across transi-

tion layers remains unchanged. We refer the DenseNet with

θ<1 as DenseNet-C, and we set θ = 0.5 in our experiment.

When both the bottleneck and transition layers with θ < 1
are used, we refer to our model as DenseNet-BC.

Implementation Details. On all datasets except Ima-

geNet, the DenseNet used in our experiments has three

dense blocks that each has an equal number of layers. Be-

fore entering the first dense block, a convolution with 16 (or

twice the growth rate for DenseNet-BC) output channels is

performed on the input images. For convolutional layers

with kernel size 3×3, each side of the inputs is zero-padded

by one pixel to keep the feature-map size fixed. We use 1×1

convolution followed by 2×2 average pooling as transition

layers between two contiguous dense blocks. At the end of

the last dense block, a global average pooling is performed

and then a softmax classifier is attached. The feature-map

sizes in the three dense blocks are 32× 32, 16×16, and

8×8, respectively. We experiment with the basic DenseNet

structure with configurations {L = 40, k = 12}, {L =
100, k = 12} and {L = 100, k = 24}. For DenseNet-

BC, the networks with configurations {L = 100, k = 12},

{L=250, k=24} and {L=190, k=40} are evaluated.

In our experiments on ImageNet, we use a DenseNet-BC

structure with 4 dense blocks on 224×224 input images.

The initial convolution layer comprises 2k convolutions of

size 7×7 with stride 2; the number of feature-maps in all

other layers also follow from setting k. The exact network

configurations we used on ImageNet are shown in Table 1.

4. Experiments

We empirically demonstrate DenseNet’s effectiveness on

several benchmark datasets and compare with state-of-the-

art architectures, especially with ResNet and its variants.

4.1. Datasets

CIFAR. The two CIFAR datasets [15] consist of colored

natural images with 32×32 pixels. CIFAR-10 (C10) con-
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Method Depth Params C10 C10+ C100 C100+ SVHN

Network in Network [22] - - 10.41 8.81 35.68 - 2.35

All-CNN [31] - - 9.08 7.25 - 33.71 -

Deeply Supervised Net [20] - - 9.69 7.97 - 34.57 1.92

Highway Network [33] - - - 7.72 - 32.39 -

FractalNet [17] 21 38.6M 10.18 5.22 35.34 23.30 2.01

with Dropout/Drop-path 21 38.6M 7.33 4.60 28.20 23.73 1.87

ResNet [11] 110 1.7M - 6.61 - - -

ResNet (reported by [13]) 110 1.7M 13.63 6.41 44.74 27.22 2.01

ResNet with Stochastic Depth [13] 110 1.7M 11.66 5.23 37.80 24.58 1.75

1202 10.2M - 4.91 - - -

Wide ResNet [41] 16 11.0M - 4.81 - 22.07 -

28 36.5M - 4.17 - 20.50 -

with Dropout 16 2.7M - - - - 1.64

ResNet (pre-activation) [12] 164 1.7M 11.26∗ 5.46 35.58∗ 24.33 -

1001 10.2M 10.56∗ 4.62 33.47∗ 22.71 -

DenseNet (k = 12) 40 1.0M 7.00 5.24 27.55 24.42 1.79

DenseNet (k = 12) 100 7.0M 5.77 4.10 23.79 20.20 1.67

DenseNet (k = 24) 100 27.2M 5.83 3.74 23.42 19.25 1.59

DenseNet-BC (k = 12) 100 0.8M 5.92 4.51 24.15 22.27 1.76

DenseNet-BC (k = 24) 250 15.3M 5.19 3.62 19.64 17.60 1.74

DenseNet-BC (k = 40) 190 25.6M - 3.46 - 17.18 -

Table 2: Error rates (%) on CIFAR and SVHN datasets. k denotes network’s growth rate. Results that surpass all competing methods are

bold and the overall best results are blue. “+” indicates standard data augmentation (translation and/or mirroring). ∗ indicates results run

by ourselves. All the results of DenseNets without data augmentation (C10, C100, SVHN) are obtained using Dropout. DenseNets achieve

lower error rates while using fewer parameters than ResNet. Without data augmentation, DenseNet performs better by a large margin.

sists of images drawn from 10 and CIFAR-100 (C100) from

100 classes. The training and test sets contain 50,000 and

10,000 images respectively, and we hold out 5,000 training

images as a validation set. We adopt a standard data aug-

mentation scheme (mirroring/shifting) that is widely used

for these two datasets [11, 13, 17, 22, 27, 20, 31, 33]. We

denote this data augmentation scheme by a “+” mark at the

end of the dataset name (e.g., C10+). For preprocessing,

we normalize the data using the channel means and stan-

dard deviations. For the final run we use all 50,000 training

images and report the final test error at the end of training.

SVHN. The Street View House Numbers (SVHN) dataset

[24] contains 32×32 colored digit images. There are 73,257

images in the training set, 26,032 images in the test set, and

531,131 images for additional training. Following common

practice [7, 13, 20, 22, 29] we use all the training data with-

out any data augmentation, and a validation set with 6,000

images is split from the training set. We select the model

with the lowest validation error during training and report

the test error. We follow [41] and divide the pixel values by

255 so they are in the [0, 1] range.

ImageNet. The ILSVRC 2012 classification dataset [2]

consists 1.2 million images for training, and 50,000 for val-

idation, from 1, 000 classes. We adopt the same data aug-

mentation scheme for training images as in [8, 11, 12], and

apply a single-crop or 10-crop with size 224×224 at test

time. Following [11, 12, 13], we report classification errors

on the validation set.

4.2. Training

All the networks are trained using stochastic gradient de-

scent (SGD). On CIFAR and SVHN we train using batch

size 64 for 300 and 40 epochs, respectively. The initial

learning rate is set to 0.1, and is divided by 10 at 50% and

75% of the total number of training epochs. On ImageNet,

we train models for 90 epochs with a batch size of 256. The

learning rate is set to 0.1 initially, and is lowered by 10 times

at epoch 30 and 60. Due to GPU memory constraints, our

largest model (DenseNet-161) is trained with a mini-batch

size 128. To compensate for the smaller batch size, we train

this model for 100 epochs, and divide the learning rate by

10 at epoch 90.

Following [8], we use a weight decay of 10−4 and a

Nesterov momentum [34] of 0.9 without dampening. We

adopt the weight initialization introduced by [10]. For the

three datasets without data augmentation, i.e., C10, C100

and SVHN, we add a dropout layer [32] after each convolu-

tional layer (except the first one) and set the dropout rate to

0.2. The test errors were only evaluated once for each task

and model setting.
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Model top-1 top-5

DenseNet-121 (k=32) 25.02 (23.61) 7.71 (6.66)

DenseNet-169 (k=32) 23.80 (22.08) 6.85 (5.92)

DenseNet-201 (k=32) 22.58 (21.46) 6.34 (5.54)

DenseNet-161 (k=48) 22.33 (20.85) 6.15 (5.30)

Table 3: The top-1 and top-5 error rates on the

ImageNet validation set, with single-crop (10-

crop) testing.
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Figure 3: Comparison of the DenseNets and ResNets top-1 error rates (single-crop

testing) on the ImageNet validation dataset as a function of learned parameters (left)

and FLOPs during test-time (right).

4.3. Classification Results on CIFAR and SVHN

We train DenseNets with different depths, L, and growth

rates, k. The main results on CIFAR and SVHN are shown

in Table 2. To highlight general trends, we mark all results

that outperform the existing state-of-the-art in boldface and

the overall best result in blue.

Accuracy. Possibly the most noticeable trend may orig-

inate from the bottom row of Table 2, which shows that

DenseNet-BC with L = 190 and k = 40 outperforms

the existing state-of-the-art consistently on all the CIFAR

datasets. Its error rates of 3.46% on C10+ and 17.18% on

C100+ are significantly lower than the error rates achieved

by wide ResNet architecture [41]. Our best results on

C10 and C100 (without data augmentation) are even more

encouraging: both are close to 30% lower than Fractal-

Net with drop-path regularization [17]. On SVHN, with

dropout, the DenseNet with L = 100 and k = 24 also

surpasses the current best result achieved by wide ResNet.

However, the 250-layer DenseNet-BC doesn’t further im-

prove the performance over its shorter counterpart. This

may be explained by that SVHN is a relatively easy task,

and extremely deep models may overfit to the training set.

Capacity. Without compression or bottleneck layers,

there is a general trend that DenseNets perform better as

L and k increase. We attribute this primarily to the corre-

sponding growth in model capacity. This is best demon-

strated by the column of C10+ and C100+. On C10+, the

error drops from 5.24% to 4.10% and finally to 3.74% as

the number of parameters increases from 1.0M, over 7.0M

to 27.2M. On C100+, we observe a similar trend. This sug-

gests that DenseNets can utilize the increased representa-

tional power of bigger and deeper models. It also indicates

that they do not suffer from overfitting or the optimization

difficulties of residual networks [11].

Parameter Efficiency. The results in Table 2 indicate that

DenseNets utilize parameters more efficiently than alterna-

tive architectures (in particular, ResNets). The DenseNet-

BC with bottleneck structure and dimension reduction at

transition layers is particularly parameter-efficient. For ex-

ample, our 250-layer model only has 15.3M parameters, but

it consistently outperforms other models such as FractalNet

and Wide ResNets that have more than 30M parameters. We

also highlight that DenseNet-BC with L= 100 and k= 12
achieves comparable performance (e.g., 4.51% vs 4.62% er-

ror on C10+, 22.27% vs 22.71% error on C100+) as the

1001-layer pre-activation ResNet using 90% fewer parame-

ters. Figure 4 (right panel) shows the training loss and test

errors of these two networks on C10+. The 1001-layer deep

ResNet converges to a lower training loss value but a similar

test error. We analyze this effect in more detail below.

Overfitting. One positive side-effect of the more efficient

use of parameters is a tendency of DenseNets to be less

prone to overfitting. We observe that on the datasets without

data augmentation, the improvements of DenseNet architec-

tures over prior work are particularly pronounced. On C10,

the improvement denotes a 29% relative reduction in error

from 7.33% to 5.19%. On C100, the reduction is about 30%

from 28.20% to 19.64%. In our experiments, we observed

potential overfitting in a single setting: on C10, a 4× growth

of parameters produced by increasing k=12 to k=24 lead

to a modest increase in error from 5.77% to 5.83%. The

DenseNet-BC bottleneck and compression layers appear to

be an effective way to counter this trend.

4.4. Classification Results on ImageNet

We evaluate DenseNet-BC with different depths and

growth rates on the ImageNet classification task, and com-

pare it with state-of-the-art ResNet architectures. To ensure

a fair comparison between the two architectures, we elimi-

nate all other factors such as differences in data preprocess-

ing and optimization settings by adopting the publicly avail-

able Torch implementation for ResNet by [8]1. We simply

replace the ResNet model with the DenseNet-BC network,

and keep all the experiment settings exactly the same as

those used for ResNet. The only exception is our largest

DenseNet model is trained with a mini-batch size of 128

1https://github.com/facebook/fb.resnet.torch
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Figure 4: Left: Comparison of the parameter efficiency on C10+ between DenseNet variations. Middle: Comparison of the parameter

efficiency between DenseNet-BC and (pre-activation) ResNets. DenseNet-BC requires about 1/3 of the parameters as ResNet to achieve

comparable accuracy. Right: Training and testing curves of the 1001-layer pre-activation ResNet [12] with more than 10M parameters and

a 100-layer DenseNet with only 0.8M parameters.

because of GPU memory limitations; we train this model

for 100 epochs with a third learning rate drop after epoch

90 to compensate for the smaller batch size.

We report the single-crop and 10-crop validation errors

of DenseNets on ImageNet in Table 3. Figure 3 shows

the single-crop top-1 validation errors of DenseNets and

ResNets as a function of the number of parameters (left) and

FLOPs (right). The results presented in the figure reveal that

DenseNets perform on par with the state-of-the-art ResNets,

whilst requiring significantly fewer parameters and compu-

tation to achieve comparable performance. For example, a

DenseNet-201 with 20M parameters model yields similar

validation error as a 101-layer ResNet with more than 40M

parameters. Similar trends can be observed from the right

panel, which plots the validation error as a function of the

number of FLOPs: a DenseNet that requires as much com-

putation as a ResNet-50 performs on par with a ResNet-101,

which requires twice as much computation.

It is worth noting that our experimental setup implies

that we use hyperparameter settings that are optimized for

ResNets but not for DenseNets. It is conceivable that more

extensive hyper-parameter searches may further improve

the performance of DenseNet on ImageNet.2

5. Discussion

Superficially, DenseNets are quite similar to ResNets:

Eq. (2) differs from Eq. (1) only in that the inputs to Hℓ(·)
are concatenated instead of summed. However, the implica-

tions of this seemingly small modification lead to substan-

tially different behaviors of the two network architectures.

Model compactness. As a direct consequence of the in-

put concatenation, the feature-maps learned by any of the

DenseNet layers can be accessed by all subsequent layers.

This encourages feature reuse throughout the network, and

leads to more compact models.

2Our DenseNet implementation contains some memory inefficiencies

which temporarily precludes experiments with over 30M parameters.

The left two plots in Figure 4 show the result of an

experiment that aims to compare the parameter efficiency

of all variants of DenseNets (left) and also a comparable

ResNet architecture (middle). We train multiple small net-

works with varying depths on C10+ and plot their test ac-

curacies as a function of network parameters. In com-

parison with other popular network architectures, such as

AlexNet [16] or VGG-net [28], ResNets with pre-activation

use fewer parameters while typically achieving better re-

sults [12]. Hence, we compare DenseNet (k = 12) against

this architecture. The training setting for DenseNet is kept

the same as in the previous section.

The graph shows that DenseNet-BC is consistently the

most parameter efficient variant of DenseNet. Further, to

achieve the same level of accuracy, DenseNet-BC only re-

quires around 1/3 of the parameters of ResNets (middle

plot). This result is in line with the results on ImageNet

we presented in Figure 3. The right plot in Figure 4 shows

that a DenseNet-BC with only 0.8M trainable parameters

is able to achieve comparable accuracy as the 1001-layer

(pre-activation) ResNet [12] with 10.2M parameters.

Implicit Deep Supervision. One explanation for the im-

proved accuracy of dense convolutional networks may be

that individual layers receive additional supervision from

the loss function through the shorter connections. One can

interpret DenseNets to perform a kind of “deep supervi-

sion”. The benefits of deep supervision have previously

been shown in deeply-supervised nets (DSN; [20]), which

have classifiers attached to every hidden layer, enforcing the

intermediate layers to learn discriminative features.

DenseNets perform a similar deep supervision in an im-

plicit fashion: a single classifier on top of the network pro-

vides direct supervision to all layers through at most two or

three transition layers. However, the loss function and gra-

dient of DenseNets are substantially less complicated, as the

same loss function is shared between all layers.

Stochastic vs. deterministic connection. There is an

interesting connection between dense convolutional net-
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works and stochastic depth regularization of residual net-

works [13]. In stochastic depth, layers in residual networks

are randomly dropped, which creates direct connections be-

tween the surrounding layers. As the pooling layers are

never dropped, the network results in a similar connectiv-

ity pattern as DenseNet: there is a small probability for

any two layers, between the same pooling layers, to be di-

rectly connected—if all intermediate layers are randomly

dropped. Although the methods are ultimately quite dif-

ferent, the DenseNet interpretation of stochastic depth may

provide insights into the success of this regularizer.

Feature Reuse. By design, DenseNets allow layers ac-

cess to feature-maps from all of its preceding layers (al-

though sometimes through transition layers). We conduct

an experiment to investigate if a trained network takes ad-

vantage of this opportunity. We first train a DenseNet on

C10+ with L = 40 and k = 12. For each convolutional

layer ℓ within a block, we compute the average (absolute)

weight assigned to connections with layer s. Figure 5 shows

a heat-map for all three dense blocks. The average absolute

weight serves as a surrogate for the dependency of a convo-

lutional layer on its preceding layers. A red dot in position

(ℓ, s) indicates that the layer ℓ makes, on average, strong use

of feature-maps produced s-layers before. Several observa-

tions can be made from the plot:

1. All layers spread their weights over many inputs within

the same block. This indicates that features extracted

by very early layers are, indeed, directly used by deep

layers throughout the same dense block.

2. The weights of the transition layers also spread their

weight across all layers within the preceding dense

block, indicating information flow from the first to the

last layers of the DenseNet through few indirections.

3. The layers within the second and third dense block

consistently assign the least weight to the outputs of

the transition layer (the top row of the triangles), in-

dicating that the transition layer outputs many redun-

dant features (with low weight on average). This is in

keeping with the strong results of DenseNet-BC where

exactly these outputs are compressed.

4. Although the final classification layer, shown on the

very right, also uses weights across the entire dense

block, there seems to be a concentration towards final

feature-maps, suggesting that there may be some more

high-level features produced late in the network.

6. Conclusion

We proposed a new convolutional network architec-

ture, which we refer to as Dense Convolutional Network

(DenseNet). It introduces direct connections between any
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Figure 5: The average absolute filter weights of convolutional lay-

ers in a trained DenseNet. The color of pixel (s, ℓ) encodes the av-

erage L1 norm (normalized by number of input feature-maps) of

the weights connecting convolutional layer s to ℓ within a dense

block. Three columns highlighted by black rectangles correspond

to two transition layers and the classification layer. The first row

encodes weights connected to the input layer of the dense block.

two layers with the same feature-map size. We showed that

DenseNets scale naturally to hundreds of layers, while ex-

hibiting no optimization difficulties. In our experiments,

DenseNets tend to yield consistent improvement in accu-

racy with growing number of parameters, without any signs

of performance degradation or overfitting. Under multi-

ple settings, it achieved state-of-the-art results across sev-

eral highly competitive datasets. Moreover, DenseNets

require substantially fewer parameters and less computa-

tion to achieve state-of-the-art performances. Because we

adopted hyperparameter settings optimized for residual net-

works in our study, we believe that further gains in accuracy

of DenseNets may be obtained by more detailed tuning of

hyperparameters and learning rate schedules.

Whilst following a simple connectivity rule, DenseNets

naturally integrate the properties of identity mappings, deep

supervision, and diversified depth. They allow feature reuse

throughout the networks and can consequently learn more

compact and, according to our experiments, more accurate

models. Because of their compact internal representations

and reduced feature redundancy, DenseNets may be good

feature extractors for various computer vision tasks that

build on convolutional features, e.g., [4, 5]. We plan to

study such feature transfer with DenseNets in future work.
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